8.5 Promedio móvil de punto final La media móvil de punto final (EPMA) establece un precio promedio ajustando una línea recta de mínimos cuadrados (vea Regresión lineal) a través de los últimos precios de cierre de N días y tomando el punto final de la línea (es decir, Día) como el promedio. Este cálculo va por un número de otros nombres, incluyendo la media móvil de mínimos cuadrados (LSQMA), la regresión lineal en movimiento y la predicción de series de tiempo (TSF). Joe Sharprsquos ldquomodified mover averagerdquo es lo mismo también. La fórmula termina siendo un promedio ponderado directo de los últimos precios del N, con pesos que van de 2N-1 a - N2. Esto se deriva fácilmente de las fórmulas de los mínimos cuadrados, pero sólo mirando las ponderaciones la conexión a los mínimos cuadrados no es nada obvia. Si p1 es todayrsquos cerca, p2 ayer, etc, entonces Los pesos disminuyen 3 por cada día más viejo, e ir negativo para el tercio más antiguo de los N días. El siguiente gráfico muestra que para N15. Los negativos significan que el promedio es ldquooverweightrdquo en los precios recientes y pueden sobrepasar la acción del precio después de un salto repentino. En general, sin embargo, debido a que la línea ajustada pasa deliberadamente a mitad de los precios recientes, la EPMA tiende a estar en medio de los precios recientes, o una proyección de donde parecían estar en tendencia. Es interesante comparar la EPMA con una SMA simple (ver Media móvil simple). Una SMA dibuja efectivamente una línea horizontal a través de los precios de N días anteriores (su media), mientras que la EPMA dibuja una línea inclinada. El indicador de inercia (véase Inercia) utiliza la EPMA. Kevin Ryde Chart es un software libre que puede redistribuirlo y / o modificarlo bajo los términos de la Licencia Pública General GNU publicada por la Fundación de Software Libre ya sea versión 3 , O (a su opción) cualquier versión posterior. Moviendo Promedios Material Motivado por correo electrónico de Robert B. Recibo este correo electrónico preguntando sobre el Hull (Hull) y. Y nunca lo habías oído antes. Uh. está bien. De hecho, cuando realicé una búsqueda en Google descubrí un montón de promedios móviles de los que nunca había oído hablar, como: Límite de cero Media móvil exponencial Media móvil más baja Promedio móvil mínimo cuadrado Promedio móvil triangular Promedio móvil adaptable Promedio móvil Jurik. Así que pensé en hablar conmigo sobre los promedios móviles y. Havent que hiciste eso antes, como aquí y aquí y aquí y aquí y. Sí, sí, pero eso fue antes de que yo supiera de todos estos otros promedios móviles. De hecho, los únicos con los que jugué eran éstos, donde P 1. P2. P n son los últimos precios de las acciones n (siendo P n el más reciente). Promedio móvil simple (SMA) (P 1 P 2. P n) / K donde K n. Promedio móvil ponderado (WMA) (P 1 2 P 2 3 P 3.n P n) / K donde K (12.n) n (n1) / 2. Promedio Móvil Exponencial (EMA) (P n 945 P n-1 945 2 P n-2 945 3 P n-3) / K donde K 1 945945 2. 1 / (1-945). Nunca he visto esa fórmula EMA antes. Siempre thoguht que era. Sí, normalmente se escribe de manera diferente, pero quería mostrar que estos tres tienen prescripciones similares. (Vea las cosas de la EMA aquí y aquí.) De hecho, todas parecen: Tenga en cuenta que, si todos los Ps son iguales, digamos, Po, entonces la media móvil es igual a Po. Y esa es la forma en que cualquier medio que se respete debería comportarse. Así que cuál es el mejor Definir mejor. Aquí hay unos pocos promedios móviles, tratando de realizar un seguimiento de una serie de precios de las acciones que varían de una manera sinusoidal: los precios de las acciones que siguen una curva senoidal ¿Dónde encontró una acción como que Preste atención Observe que los promedios móviles comúnmente utilizados (SMA, WMA Y EMA) alcanzan su máximo después de la curva sinusoidal. Eso es retraso y. Pero, ¿qué pasa con ese tipo de HMA? Se ve muy bien Sí, y eso es lo que queremos hablar. En efecto. Y cuál es ese 6 en HMA (6) y veo algo llamado MMA (36) y. Paciencia. Promedio móvil del casco Comenzamos calculando el promedio móvil ponderado (WMA) de 16 días así: 1 WMA (16) (P 1 2 P 2 3 P 3. 16 P n) / K con K 12. 16 136. Aunque su Agradable y smoooth, itll tienen un retraso más grande que wed como: Así que miramos el WMA de 8 días: Me gusta Sí, sigue las variaciones de precios bastante bien. Pero hay más. Mientras que WMA (8) mira precios más recientes, todavía tiene un retraso, así que vemos cuánto ha cambiado la WMA al pasar de 8 días a 16 días. La diferencia sería así: en cierto sentido, esa diferencia da alguna indicación de cómo la AMM está cambiando. Por lo que añadimos este cambio a nuestro anterior WMA (8) para dar: 2 WMA (16) WMA (8) WMA (8) - WMA (16) 2 WMA (8) - WMA (16). MMA ¿Por qué llamarla MMA? Tartamudeo. De todos modos, MMA (16) se vería así: Ill take it Patience. hay más. Ahora introducimos la transformación mágica y obtenemos. Ta-DUM Eso es casco Sí. Como lo entiendo Pero ¿cuál es el ritual mágico Después de haber generado una serie de MMA s que implican los promedios móviles ponderados de 8 días y 16 días, miramos atentamente esta secuencia de números. Luego calculamos el WMA en los últimos 4 días. Eso da el promedio móvil Hull que hemos llamado HMA (4). Huh 16 días entonces 8 días entonces 4 días. ¿Lanzar una moneda para ver cuántos. Usted escoge un número de días, como n 16. Luego mira WMA (n) y WMA (n / 2) y calcula MMA 2 WMA (n / 2) - WMA (n). (En nuestro ejemplo, thatd ser 2 WMA (8) - WMA (16).A continuación, se calcula WMA (sqrt (n)) utilizando sólo los últimos números sqrt (n) de la serie MMA (En nuestro ejemplo, thatd estar calculando Una WMA (4), utilizando la serie MMA.) Y para que la gráfica SINE divertido Howd lo hace Así que wheres la hoja de cálculo Im todavía trabajando en ella: MA-stuff. xls Es interesante ver cómo las diferentes medias móviles reaccionan a los picos: HMA realmente un promedio móvil ponderado Bueno, vamos a ver: Tenemos: MMA 2 WMA (8) - WMA (16) 2 (P 1 2 P 2 3 P 3. 8 P n) / 36 - (P 1 2 P 2 3 (1/136) P 1 P 2 8 P 8 - (1/136) 9 P 9 10 P 10 16 P 16 Por razones sanitarias P 3 16 P n) / 136 o MMA 2 (1/36) Razones, escribe bien así: MMA w 1 P 1 w 2 P 2 w 16 P 16. Tenga en cuenta que todos los pesos se suman a 1. Además, wk 2 (1/36) - (1/136) K para K 1, 2. 8 y wk - (1/136) K para K 9, 10. 16. Entonces, haciendo el ritual mágico de raíz cuadrada (donde sqrt (16) 4) tenemos (recordando que P 16 es el más Valor reciente) HMA el WMA de 4 días de los MMAs anteriores (w 1 P 1 w 2 P 2. W 16 P 16) 2 (w 1 P 0 w 2 P 1 w 16 P 15) 3 (w 1 P -1 w 2 P 0 w 16 P 14) 4 (w 1 P -2 w 2 P -1 W 16 P 13) / 10 (observando que 1234 10). Huh P 0. P $ ^ { - 1} $. Qué. El MMA (16) utiliza los últimos 16 días, de regreso al precio se llamaba P 1. Si calculamos el promedio ponderado de 4 días de estos MMAs, bien usando el MMA de ayer (y eso se remonta 1 día antes de P 1) y el día anterior, el MMA se remonta a 2 días antes de P 1 y el día Antes that. Okay, por lo que está llamando a precios P 0. P -1 etc. etc. Lo tienes. Así que un HMA de 16 días en realidad utiliza información que se remonta a más de 16 días, a la derecha Usted lo consiguió. Pero hay pesos negativos para ellos viejos precios Es eso legal La prueba está en el. Sí, sí. la prueba está en el pudín. Así que lo que hace la hoja de cálculo Hasta ahora se ve como esto: (Haga clic en la imagen para descargar.) Puede elegir una serie SINE o una serie RANDOM de precios de las acciones. Para este último, cada vez que haga clic en un botón obtendrá otro conjunto de precios. Entonces usted puede elegir el número de días: thats nuestro n. (Por ejemplo, utilizamos n 16 para nuestro ejemplo, arriba). Además, si elige la serie SINE, puede introducir picos y moverlos a lo largo del gráfico. Me gusta esto . Tenga en cuenta que hemos utilizado n 16 y n 36 (en la imagen de la hoja de cálculo) causa n / 2 y sqrt (n) son ambos enteros. Si utiliza algo como n 15 entonces la hoja de cálculo utiliza la parte INT eger de n / 2 y sqrt (n), es decir, 7 y 3. Por lo tanto, es la media móvil Hull el mejor Definir mejor. ¿Qué pasa con ese Jurik promedio? No sé nada sobre él. Es propietario y tienes que pagar para usarlo. Sin embargo, permite jugar con promedios móviles. Otro promedio móvil Suponga que, en lugar de la media móvil ponderada (donde los pesos son proporcionales a 1, 2, 3.). Usamos el ritual mágico del Casco con el Promedio Móvil Exponencial. Es decir, consideramos que: MAg 2 EMA (n / 2) - EMA (n) MAg Sí, es decir, M oving A verage g inmick o M oving A verage g eneralized o M oving A verage g rand o. O M oving M og a de Ver a P o r P o r P o r P u ñ o ç. My.......................................... Podemos jugar con 945 yk y ver lo que tenemos: Por ejemplo, aquí están unos pocos MAgs (donde se quedaron a 16 días, pero cambiando los valores de 945 y k): MAg (16) 2 EMA (4) - EMA 16) 1.5 EMA (5) - 0.5 EMA (16) Tenga en cuenta que cuando tomamos k 3 obtenemos n / k 16/3 5.333 que cambiamos a simple y simple 5.0. ¿Por qué no te quedas con las opciones de cascos: 945 2 y k 2 buena idea. Mieras obtener esto: MAg (16) 2 EMA (8) - EMA (16) Parece que el gráfico con 945 1,5 y k 3. Lo hace, no lo hizo ¿Usted goof. De nuevo Posiblemente. Así que qué sobre ese ritual de raíz cuadrada lo dejo como un ejercicio. Para ti Bueno, mientras jugaba con esa cosa MAg encuentro que Hulls k 2 funciona bastante bien. Tan bien se adhieren a eso. Sin embargo, a menudo obtenemos un promedio bastante bueno cuando agregamos sólo una pequeña parte del cambio: EMA (n / 2) - EMA (n). De hecho, bien agregue sólo una fracción 946 de ese cambio. Se obtiene: MAg (n, 946) EMA (n / 2) 946 EMA (n / 2) - EMA (n). Es decir, se elige 946 0,5 o tal vez sólo 946 0,25 o lo que sea y utilice: Por ejemplo, si comparamos nuestra manada de promedios móviles como rastrear una función STEP, obtenemos esto, donde agregamos (para MAg) sólo 946 1 / 2 del cambio. Sí, pero cuál es el mejor valor de beta. Definir mejor: Tenga en cuenta que la beta 1 es la elección del casco. Excepto que estaban usando EMAs en lugar de WMAs. Y dejaste esa cosa de raíz cuadrada. Uh, sí. Olvidé eso. Nota . La hoja de cálculo cambia de una hora a otra. En la actualidad se ve como este Algo para jugar Con me tengo una hoja de cálculo que se parece a esto. Haga clic en la imagen para descargar. Usted escoge una acción y hace clic en un botón y consigue un valor de años de precios diarios. El usted elige HMA o MAg, cambiando el número de días y, para MAg, el parámetro, y ve cuándo debe COMPRAR ro SELL. Basado en qué criterio Si el promedio móvil es DOWN x de su máximo en los últimos 2 días, COMPRA. (En el ejemplo, x 1.0) Si su UP y de su mínimo durante los últimos 2 días, VENDE. (En el ejemplo, y 1.5) Puede cambiar los valores de x e y. Tiene algo de bueno. Estos criterios, dije que era algo con lo que jugar. Theres esta otra técnica de alisado llamado el Hodrick-Prescott Filtro. Con la ayuda de Ron McEwan, ahora está incluido en esta hoja de cálculo: ¿Es bueno jugar con él. Notará que hay un parámetro que puede cambiar en la celda M3. Y COMPRAR y VENDER señales. Adicionar una tendencia o línea de media móvil a un gráfico Se aplica a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Más. Menos Para mostrar las tendencias de datos o las medias móviles en un gráfico que creó. Puede agregar una línea de tendencia. También puede ampliar una línea de tendencia más allá de sus datos reales para ayudar a predecir los valores futuros. Por ejemplo, la siguiente línea de tendencia lineal pronostica dos trimestres por delante y muestra claramente una tendencia al alza que parece prometedora para las ventas futuras. Puede agregar una línea de tendencia a una gráfica bidimensional que no esté apilada, incluyendo área, barra, columna, línea, stock, dispersión y burbuja. No puede agregar una línea de tendencia a un mapa de 3-D, radar, pastel, superficie o donut apilados. Agregar una línea de tendencia En su gráfico, haga clic en la serie de datos a la que desea agregar una línea de tendencia o una media móvil. La línea de tendencia se iniciará en el primer punto de datos de la serie de datos que elija. Marque la casilla Trendline. Para elegir un tipo diferente de línea de tendencia, haga clic en la flecha junto a Trendline. A continuación, haga clic en Exponencial. Pronóstico lineal. O Media móvil de dos periodos. Para obtener más líneas de tendencia, haga clic en Más opciones. Si selecciona Más opciones. Haga clic en la opción que desee en el panel Formato de línea de tendencia bajo Opciones de línea de tendencia. Si selecciona Polynomial. Introduzca la potencia más alta para la variable independiente en el cuadro Orden. Si selecciona Media móvil. Introduzca el número de períodos que se utilizarán para calcular la media móvil en el cuadro Período. Sugerencia: Una línea de tendencia es más precisa cuando su valor R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a los datos reales) es igual o cercano a 1. Cuando agrega una línea de tendencia a sus datos , Excel calcula automáticamente su valor R-cuadrado. Puede mostrar este valor en su gráfico, marcando el valor Mostrar cuadrado R en el cuadro de gráfico (panel Formato de línea de tendencia, Opciones de línea de tendencia). Puede obtener más información sobre todas las opciones de la línea de tendencia en las secciones siguientes. Línea de tendencia lineal Utilice este tipo de línea de tendencia para crear una línea recta de mejor ajuste para conjuntos de datos lineales simples. Sus datos son lineales si el patrón en sus puntos de datos se parece a una línea. Una línea de tendencia lineal por lo general muestra que algo está aumentando o disminuyendo a un ritmo constante. Una línea de tendencia lineal utiliza esta ecuación para calcular los mínimos cuadrados aptos para una línea: donde m es la pendiente yb es la intersección. La siguiente línea de tendencia lineal muestra que las ventas de refrigeradores han aumentado constantemente durante un período de 8 años. Observe que el valor de R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a sus datos reales) es 0.9792, que es un buen ajuste de la línea a los datos. Al mostrar una línea curva mejor ajustada, esta línea de tendencia es útil cuando la tasa de cambio en los datos aumenta o disminuye rápidamente y luego se nivela. Una línea de tendencia logarítmica puede usar valores negativos y positivos. Una línea de tendencia logarítmica utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c y b son constantes y ln es la función de logaritmo natural. La siguiente línea de tendencia logarítmica muestra el crecimiento poblacional previsto de los animales en un área de espacio fijo, donde la población nivelada como espacio para los animales disminuyó. Tenga en cuenta que el valor R-cuadrado es 0.933, que es un ajuste relativamente bueno de la línea a los datos. Esta línea de tendencia es útil cuando sus datos fluctúan. Por ejemplo, cuando analiza ganancias y pérdidas en un conjunto de datos grande. El orden del polinomio puede determinarse por el número de fluctuaciones en los datos o por el número de curvas (colinas y valles) que aparecen en la curva. Normalmente, una línea de tendencia polinomial de Orden 2 tiene sólo una colina o valle, una Orden 3 tiene una o dos colinas o valles, y una Orden 4 tiene hasta tres colinas o valles. Una línea de tendencia polinomial o curvilínea utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde b son constantes. La siguiente línea de tendencia polinomial de la orden 2 (una colina) muestra la relación entre la velocidad de conducción y el consumo de combustible. Observe que el valor R-cuadrado es 0.979, que es cercano a 1 por lo que las líneas un buen ajuste a los datos. Al mostrar una línea curva, esta línea de tendencia es útil para conjuntos de datos que comparan medidas que aumentan a una velocidad específica. Por ejemplo, la aceleración de un coche de carreras a intervalos de 1 segundo. No puede crear una línea de tendencia de energía si sus datos contienen valores cero o negativos. Una línea de tendencia de potencia usa esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde cyb son constantes. Nota: Esta opción no está disponible cuando los datos incluyen valores negativos o cero. El siguiente gráfico de medidas de distancia muestra la distancia en metros por segundos. La línea de tendencia de potencia demuestra claramente la creciente aceleración. Tenga en cuenta que el valor R-cuadrado es 0.986, que es un ajuste casi perfecto de la línea a los datos. Al mostrar una línea curva, esta línea de tendencia es útil cuando los valores de los datos suben o bajan a tasas constantemente en aumento. No puede crear una línea de tendencia exponencial si sus datos contienen valores cero o negativos. Una línea de tendencia exponencial utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c yb son constantes y e es la base del logaritmo natural. La siguiente línea de tendencia exponencial muestra la cantidad decreciente de carbono 14 en un objeto a medida que envejece. Tenga en cuenta que el valor R-cuadrado es 0,990, lo que significa que la línea se ajusta a los datos casi perfectamente. Tendencia media móvil Esta línea de tendencia evinge las fluctuaciones de los datos para mostrar un patrón o una tendencia más claramente. Una media móvil utiliza un número específico de puntos de datos (establecidos por la opción Período), los promedia y utiliza el valor promedio como un punto en la línea. Por ejemplo, si Período se establece en 2, el promedio de los dos primeros puntos de datos se utiliza como el primer punto de la línea de tendencia del promedio móvil. El promedio de los puntos de datos segundo y tercero se utiliza como segundo punto en la línea de tendencia, etc. Una línea de tendencia de media móvil utiliza esta ecuación: El número de puntos en una línea de tendencia de media móvil es igual al número total de puntos de la serie menos el Número que especifique para el período. En un gráfico de dispersión, la línea de tendencia se basa en el orden de los valores de x en el gráfico. Para obtener un resultado mejor, ordene los valores x antes de agregar un promedio móvil. La siguiente línea de tendencia de media móvil muestra un patrón en el número de viviendas vendidas en un período de 26 semanas. Ver también
Forex Market Horas GMT MT4 Indicador Horario de Mercado de Forex GMT MT4 Indicador 8211 super fácil de usar Forex sesión MT4 Indicador. Este indicador dibuja las sesiones forex principales. A pesar de que no parece ser muy crucial al principio, el momento adecuado para el comercio es uno de los elementos más importantes para ser un comerciante de éxito. Durante las sesiones de Sydney y Tokio, los precios generalmente se mueven en la dirección opuesta a la de las sesiones de Nueva York y Londres. El mejor momento para intercambiar divisas es cuando la mayoría de los participantes del mercado están en el mercado. Más participantes significan más volumen y volatilidad. Puedo decirle muchas razones por las cuales usted debe mirar cuidadosamente las horas de negociación del mercado de cambios de divisas: 1. La primera unas pocas horas después de que el mercado de Londres se abre es muy importante ya menudo señalan cómo se desarrollará el resto de la sesión. 2. Cuando los mercados de Nueva Y...
Comments
Post a Comment